Sobre a liberdade (1689 ?)

(De Libertate) [1689?]
G. W. Leibniz

Como a liberdade e a contingência podem coexistir com a série de causas e com a previdência é uma das mais antigas preocupações da raça humana. E a dificuldade do problema tem apenas se intensificado através das investigações realizadas pelos Cristãos no que diz respeito à justiça divina em prover a salvação dos homens.

Quando eu considerava que nada acontece por acaso ou por acidente (a menos que estejamos considerando certas substâncias entendidas por si mesmas), que a fortuna diferenciada do destino é nome vazio, e que nenhuma coisa existe a menos que suas próprias condições [requisitis] particulares estejam presentes (condições de cuja presença conjunta se segue, alternadamente, que as coisas existem) estive muito próximo à opinião daqueles que pensam que tudo é absolutamente necessário, que julgam que é suficiente para a liberdade que não estejamos coagidos, mesmo que estejamos sujeitos à necessidade, e próximo à opinião daqueles que não distinguem o que é infalível ou certamente conhecido como verdadeiro, daquilo que é necessário.

Mas a consideração dos possíveis, que não são, não foram e não serão, trouxe-me de volta esse princípio. Pois se há certos possíveis que nunca existem, então, as coisas que existem, pelo menos, não são sempre necessárias, pois do contrário, seria impossível para outras coisas existir em seu lugar e, assim, todas as coisas que nunca existem seriam impossíveis. Tampouco podemos realmente negar que muitas histórias, especialmente aquelas denominadas fábulas, são pensadas como sendo possíveis, embora não possam encontrar lugar nessa série universal selecionada por Deus – a menos que se imagine que em uma tal extensão de espaço e de tempo há certas regiões poéticas onde podemos ver o Rei Arthur da Grã-Bretanha, Amadis de Gaul, e as histórias germânicas sobre o célebre Dietrich von Bern, vagando pelo mundo. Isso não parece muito distante da opinião de um distinto filósofo de nossa era, que em certo local explicitamente afirma que a matéria assume sucessivamente todas as formas de que é capaz (Princípio de Filosofia parte III art. 47), algo dificilmente defensável. 2 Pois isso eliminaria toda a beleza do universo e toda escolha entre as coisas, sem falar de outras considerações pelas quais o contrário pode ser provado.

Portanto, reconhecendo a contingência das coisas, eu, além disso, considerava o que deveria ser uma clara noção da verdade, pois esperava, e não absurdamente, por alguma luz oriunda daquela direção sobre como as verdades necessárias e contingentes poderiam ser distinguidas. Ora, percebi que é comum a toda proposição verdadeira afirmativa, universal e (ou) particular, necessária ou contingente, que o predicado esteja no sujeito, isto é, que a noção do predicado está envolvida de algum modo na noção do sujeito. E essa é a fonte [principium] da infalibilidade de todo tipo de verdade para aquele ser que conhece todas as coisas a priori. Mas isso parecia-me apenas intensificar a dificuldade, pois se a noção do predicado está na noção do sujeito em um dado tempo, então, como poderia o sujeito carecer do predicado sem contradição e impossibilidade e sem alterar aquela noção?

Finalmente, uma nova e inesperada luz brilhou de onde eu menos esperava, ou seja, das considerações matemáticas acerca da natureza do infinito. Pois há dois labirintos da mente humana: um diz respeito à composição do contínuo e o outro refere-se à natureza da liberdade e ambos provêm da mesma fonte, o infinito. Aquele mesmo filósofo já citado anteriormente preferiu cortar ambas as dificuldades com uma espada já que ele ou não poderia resolver os problemas, ou tampouco quis revelar sua opinião. Pois em seus Princípios de Filosofia I, art. 40 e 41, afirma que facilmente podemos nos enredar em enormes dificuldades se tentarmos reconciliar a predeterminação de Deus com o livre arbítrio; mas, afirma ele, devemos nos abster de discutir essas questões, já que não podemos compreender a natureza de Deus. E também, em Princípios de Filosofia II art. 35, ele afirma que não devemos duvidar da infinita divisibilidade da matéria mesmo se não a podemos compreender. Porém, isso não é satisfatório, pois uma coisa é não compreendermos algo e outra coisa muito diversa é compreendermos que é contraditório. E assim, devemos, ao menos, ser capazes de responder a esses argumentos, que parecem acarretar que a liberdade ou a divisão da matéria implica uma contradição.

Portanto, devemos compreender que todas as criaturas têm gravadas em si um certo sinal [character] da divina infinidade, e que essa é a fonte de muitas coisas maravilhosas que assombram a mente humana.
Na verdade, não há porção de matéria tão diminuta que não contenha um tipo de mundo de criaturas, infinitas em número, e não há substância individual criada tão imperfeita que não atue sobre todas as outras e que não sofra suas ações, nenhuma substância tão imperfeita que não contenha o universo inteiro, e o que quer que seja, foi ou será, em sua noção completa (tal como existe na mente divina), nem há qualquer verdade de fato ou qualquer verdade relativa às coisas individuais que não dependa da infinita série de razões; o que quer que esteja nessa série pode ser visto apenas por Deus. Essa também é a razão pela qual apenas Deus conhece as verdades contingentes a priori e vê sua infalibilidade de outro modo que não através da experiência.

Após haver considerado mais atentamente essas questões, uma distinção mais profunda entre as verdades necessárias e contingentes me foi revelada. Ou seja, toda verdade ou é básica [originaria] ou derivada. As verdades básicas são aquelas para as quais não podemos fornecer uma razão; as identidades ou verdades imediatas, que afirmam a mesma coisa de si mesmas ou negam a contradição de suas contradições, são verdades deste tipo. As verdades derivadas, por sua vez, são de dois tipos, pois algumas podem ser decompostas em verdades básicas e outras, em sua decomposição, dão origem a uma série de etapas que vai ao infinito. As primeiras são necessárias; as últimas, contingentes. Na verdade, uma proposição necessária é aquela cujo contrário implica uma contradição. Toda proposição idêntica e toda proposição derivada decomposta em proposições idênticas são de um tal tipo, como as verdades denominadas metafísicas ou necessidades geométricas. Pois a demonstração nada mais é que expor uma determinada igualdade ou coincidência do predicado com o sujeito (no caso de uma proposição recíproca) pela decomposição dos termos de uma proposição e pela substituição de uma definição ou parte de uma por aquilo que está definido ou, em outros casos, ao menos revelando a inclusão para que aquilo que permanece oculto na proposição e estava nela contido virtualmente torne-se evidente e explícito através da demonstração. Por exemplo, se por um número ternário, senário ou duodenário entendemos aquele divisível por 3, 6 , 12, então, podemos demonstrar a proposição segundo a qual todo duodenário é senário. Pois todo número duodenário é binário-binário-ternário (que é a análise de um duodenário em seus fatores primos, 12 = 2 x 2 x 3, isto é, a definição de um duodenário) e todo binário-binário-ternário é binário-ternário (que é uma proposição idêntica), e todo binário-ternário é senário (que é a definição de senário, 6 = 2 x 3). Portanto, todo duodenário é senário (12 = 2 x 2 x 3 e 2 x 2 x 3 é divisível por 2 x 3, e 2 x 3 é igual a 6. Portanto, 12 é divisível por 6).

Mas, nas verdades contingentes, ainda que o predicado esteja no sujeito, isso nunca pode ser demonstrado, tampouco pode uma proposição ser reduzida [revocari] a uma unidade ou a uma identidade, mas a análise continua ao infinito, apenas Deus vendo, não no fim da análise, é evidente, que não existe, mas, a conexão dos termos ou a inclusão do predicado no sujeito, já que Ele vê o que quer que seja na série. De fato, essa própria verdade foi derivada em parte do Seu intelecto, em parte de Sua vontade, e expressa Sua infinita perfeição e a harmonia de toda série de coisas em seu modo particular.

Todavia, nos restam dois modos para conhecer as verdades contingentes: um através da experiência e outro por meio da razão – pela experiência quando percebemos uma coisa distintamente através dos sentidos e pela razão quando alguma coisa é conhecida a partir do princípio geral segundo o qual nada é sem razão ou que sempre há alguma razão pela qual o predicado está no sujeito. De fato, devemos assumir como certo que Deus fez todas as coisas do modo mais perfeito, e que Ele nada faz sem uma razão, e que nada acontece, em qualquer lugar, a menos que Ele que a tudo conhece, reconheça sua razão, ou seja, por que o estado das coisas é deste modo e não de outro. E assim, razões podem ser fornecidas não menos para as ações das mentes do que para as ações dos corpos, embora as escolhas feitas pelas mentes careçam de necessidade. Os pecados advêm da limitação original das coisas. Deus não escolhe os pecados tanto quanto escolhe admitir à existência certas substâncias possíveis, que envolve pecados livres quanto possíveis em suas noções completas e mesmo contém toda a série de coisas no que estarão contidas. Nem devemos duvidar que há razões ocultas que transcendem completamente a compreensão de uma criatura, razões pelas quais Deus prefere uma série de coisas, embora inclua os pecados, a uma outra. Mas Deus escolhe apenas a perfeição, isto é, o positivo. Todavia, a limitação e, dele se originando, o pecado são permitidos desde que estabelecendo certos decretos positivos, sua rejeição absoluta é excluída. Mas, nenhum dos preceitos [rationes] da sabedoria são de utilidade aqui exceto aquele pelo qual a limitação e o pecado devem ser compensados por um outro bem não passível de obtenção. Todavia, essas questões não são oportunas aqui.

Mas, a fim de melhor fixar a atenção da mente de modo que ela não salte de uma objeção sem objetivo a uma outra, uma certa analogia entre verdade e proposições vem à mente, que maravilhosamente parece iluminar toda a questão e fazer jorrar sobre ela uma luz transparente. Assim como em toda proporção um número menor está para um maior ou um igual está para um igual, assim, em toda verdade o predicado está no sujeito. E assim como em toda proposição entre quantidades homogêneas, pode-se empreender uma determinada análise de iguais ou congruentes e pode-se subtrair o menor do maior pela subtração de uma parte, do maior, igual ao menor, e de forma semelhante, pode-se subtrair um resto do resultado daquela subtração, e assim por diante, até onde se deseje, ou ao infinito, assim também na análise das verdades, um [termo] equivalente sempre pode ser substituído por um termo, de modo que o predicado está disperso nas coisas contidas no sujeito. Mas nas proporções, enquanto a análise, às vezes, chega a um fim e a uma medida comum, ou seja, aquela que avalia cada termo da proporção através da exata repetição de si mesma, em outros casos a análise pode continuar ao infinito, como ocorre na comparação entre um número racional e um irracional, tal como a comparação do lado e a diagonal de um quadrado. Então, de modo similar, as verdades são, às vezes, demonstráveis, isto é, necessárias e, por outras, são livres ou contingentes e, então, não podem ser decompostas, por qualquer análise, a uma identidade, a uma medida comum, por assim dizer. E essa é uma distinção essencial, tanto para as proporções como para as verdades.

Todavia, assim como as proporções incomensuráveis são tratadas na ciência da geometria e possuímos provas acerca de séries infinitas, em uma maior extensão, as verdades contingentes ou infinitas estão subordinadas ao conhecimento divino e por Ele são conhecidas, na verdade, não através da demonstração (que implicaria uma contradição), mas por meio de Sua infalível intuição [visio]. Todavia, a intuição de Deus dificilmente deve ser pensada como um tipo de conhecimento da experiência (como se Ele visse algo nas coisas distinto de Si mesmo), mas como um conhecimento a priori, conhecimento derivado das razões para as verdades, na medida em que Ele vê as coisas no Seu interior [ex se ipsa], os possíveis através de uma consideração de Sua própria natureza e as coisas existentes através da consideração adicional de Seu livre arbítrio e Seus decretos, o mais importante dos quais é que todas as coisas acontecem do melhor modo, e pela melhor razão. Todavia, o que se denomina conhecimento médio nada mais é que o conhecimento dos possíveis contingentes.

Ademais, uma vez que essas coisas tenham sido adequadamente consideradas, não penso que possa surgir qualquer dificuldade sobre essa questão cuja solução não possa derivar do que foi dito. Pois, tendo-se aceito a noção de necessidade que todo mundo admite, ou seja, que aquelas coisas cujo contrário implica uma contradição são precisamente aquelas que são necessárias, prontamente aparecerá da consideração da natureza da demonstração e análise que certamente pode haver, de fato deve haver, verdades que não podem ser reduzidas por qualquer análise a verdades idênticas ou ao princípio de contradição, verdades dotadas de uma série infinita de razões, apenas conhecidas plenamente por Deus. E, facilmente mostra-se, essa é a natureza de todas as coisas denominadas livres e contingentes, especialmente aquelas que envolvem lugar e tempo. Isso foi suficientemente demonstrado acima a partir da própria infinidade das partes do universo e da interpenetração e conexão mútua das coisas.

Notas:

1. Título do editor. Latim; F. de C. 178-85; Gr. 326;
2. O “distinto filósofo” é, evidentemente, Descartes.